On fully extended self-avoiding polygons
نویسندگان
چکیده
The paper gives recurrence relations on the number of 2n step fully extended (i.e., full-dimensional) self-avoiding polygons in n-and (n-1)-dimensional integer lattices.
منابع مشابه
Generalised Atmospheric Rosenbluth Methods (GARM)
We show that the classical Rosenbluth method for sampling self-avoiding walks [1, 2] can be extended to a general algorithm for sampling many families of objects, including self-avoiding polygons. The implementation relies on an elementary move which is a generalisation of kinetic growth; rather than only appending edges to the endpoint, edges may be inserted at any vertex providing the resulti...
متن کاملScaling function for self-avoiding polygons
Exactly solvable models of planar polygons, weighted by perimeter and area, have deepened our understanding of the critical behaviour of polygon models in recent years. Based on these results, we derive a conjecture for the exact form of the critical scaling function for planar self-avoiding polygons. The validity of this conjecture was recently tested numerically using exact enumeration data f...
متن کاملScaling prediction for self-avoiding polygons revisited
We analyse new exact enumeration data for self-avoiding polygons, counted by perimeter and area on the square, triangular and hexagonal lattices. In extending earlier analyses, we focus on the perimeter moments in the vicinity of the bicritical point. We also consider the shape of the critical curve near the bicritical point, which describes the crossover to the branched polymer phase. Our rece...
متن کاملHoneycomb lattice polygons and walks as a test of series analysis techniques
We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks...
متن کاملSelf-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 150 شماره
صفحات -
تاریخ انتشار 1996